Особенности конструкций газовых турбин. Монтаж газовых турбин


Газотурбинные установки электростанций

Газотурбинные установки (ГТУ) – тепловые машины, в которых тепловая энергия газообразного рабочего тела преобразуется в механическую энергию. Основными компонентами являются: компрессор, камера сгорания и газовая турбина. Для обеспечения работы и управления в установке присутствует комплекс объединенных между собой вспомогательных систем. ГТУ в совокупности с электрическим генератором называют газотурбинным агрегатом. Вырабатываемая мощность одного устройства составляет от двадцати киловатт до десятков мегаватт. Это классические газотурбинные установки. Производство электроэнергии на электростанции осуществляется при помощи одной или нескольких ГТУ.

Устройство и описание

Газотурбинные установки состоят из двух основных частей, расположенных в одном корпусе, – газогенератора и силовой турбины. В газогенераторе, включающем в себя камеру сгорания и турбокомпрессор, создается поток газа высокой температуры, воздействующего на лопатки силовой турбины. При помощи теплообменника производится утилизация выхлопных газов и одновременное производство тепла через водогрейный или паровой котел. Работа газотурбинных установок предусматривает использование двух видов топлива – газообразного и жидкого.

В обычном режиме ГТУ работает на газе. В аварийном или резервном при прекращении подачи газа осуществляется автоматический переход на жидкое (дизельное) топливо. В оптимальном режиме газотурбинные установки комбинированно производят электрическую и тепловую энергию. По количеству вырабатываемой тепловой энергии ГТУ значительно превосходят газопоршневые устройства. Турбоагрегаты используются на электростанциях как для работы в базовом режиме, так и для компенсирования пиковых нагрузок.

История создания

Идея использовать энергию горячего газового потока была известна еще с древних времен. Первый патент на устройство, в котором были представлены те же основные составляющие, что и в современных ГТУ, был выдан англичанину Джону Барберу в 1791 году. Газотурбинная установка включала в себя компрессоры (воздушный и газовый), камеру сгорания и активное турбинное колесо, но так и не получила практического применения.

Газотурбинные установки электростанций

В 19-м и начале 20-го века многие ученые и изобретатели всего мира разрабатывали установку, пригодную для практического применения, но все попытки были безуспешными ввиду низкого развития науки и техники тех времен. Полезная мощность, выдаваемая опытными образцами, не превышала 14% при низкой эксплуатационной надежности и конструктивной сложности.

Впервые газотурбинные установки электростанций были использованы в 1939 году в Швейцарии. В эксплуатацию была введена электростанция с турбогенератором, выполненным по простейшей схеме мощностью 5000 кВт. В 50-х годах эта схема была доработана и усложнена, что позволило увеличить КПД и мощность до 25 МВт. Производство газотурбинных установок в промышленно развитых странах сформировалось в единый уровень и направление развития по мощностям и параметрам турбоагрегатов. Суммарная мощность выпущенных в Советском Союзе и России газотурбинных установок исчисляется миллионами кВт.

Принцип работы ГТУ

Атмосферный воздух поступает в компрессор, сжимается и под высоким давлением через воздухоподогреватель и воздухораспределительный клапан направляется в камеру сгорания. Одновременно через форсунки в камеру сгорания подается газ, который сжигается в воздушном потоке. Сгорание газовоздушной смеси образует поток раскаленных газов, который с высокой скоростью воздействует на лопасти газовой турбины, заставляя их вращаться. Тепловая энергия потока горячего газа преобразуется в механическую энергию вращения вала турбины, который приводит в действие компрессор и электрогенератор. Электроэнергия с клемм генератора через трансформатор направляется в потребительскую электросеть.

Газотурбинные установки электростанций

Горячие газы через регенератор поступают в водогрейный котел и далее через утилизатор в дымовую трубу. Между водогрейным котлом и центральным тепловым пунктом (ЦТП) при помощи сетевых насосов организована циркуляция воды. Нагретая в котле жидкость поступает в ЦТП, к которому осуществляется подключение потребителей. Термодинамический цикл газотурбинной установки состоит из адиабатного сжатия воздуха в компрессоре, изобарного подвода теплоты в камере сгорания, адиабатного расширения рабочего тела в газовой турбине, изобарного отвода теплоты.

В качестве топлива для ГТУ используется природный газ – метан. В аварийном режиме, в случае прекращения подачи газа, ГТУ переводится на частичную нагрузку, а в качестве резервного топлива используются дизельное топливо или сжиженные газы (пропан-бутан). Возможные варианты работы газотурбинной установки: отпуск электроэнергии или совмещенный отпуск электричества и тепловой энергии.

Когенерация

Производство электричества с одновременной выработкой сопутствующей тепловой энергии называется когенерацией. Эта технология позволяет значительно повысить экономическую эффективность использования топлива. В зависимости от нужд газотурбинная установка дополнительно может оснащаться водогрейными или паровыми котлами. Это дает возможность получать горячую воду или пар различного давления.

Газотурбинные установки электростанций

При оптимальном использовании двух видов энергии достигается максимальный экономический эффект когенерации, а коэффициент использования топлива (КИТ) достигает 90%. В этом случае тепло выхлопных газов и тепловая энергия из системы охлаждения агрегатов, вращающих электрогенераторы (по сути, бросовая энергия), используется по назначению. При необходимости утилизируемое тепло может использоваться для производства холода в абсорбционных машинах (тригенерация). Система когенерации состоит из четырех ключевых частей: первичный двигатель (газовая турбина), электрогенератор, система теплоутилизации, система управления и контроля.

Управление

Выделяют два основных режима работы, при которых эксплуатируются газотурбинные установки:

    Стационарный. В этом режиме турбина работает при фиксированной номинальной или неполной нагрузке. До недавнего времени стационарный режим был основным для ГТУ. Остановка турбины проводилась несколько раз в год для плановых ремонтов или в случае неполадок.Переменный режим предусматривает возможность изменения мощности ГТУ. Необходимость изменять режим работы турбины может быть вызвана одной из двух причин: если изменилась потребляемая электрогенератором мощность ввиду изменения подключенной к нему нагрузки потребителей, и если изменилось атмосферное давление и температура забираемого компрессором воздуха. К нестационарным режимам, причем наиболее сложным, относится остановка и пуск газотурбинной установки. При последнем машинист газотурбинных установок должен выполнить многочисленные операции перед первым толчком ротора. Перед полноценным пуском установки осуществляется предварительная раскрутка ротора.
Газотурбинные установки электростанций

Изменение режима работы установки осуществляется регулировкой подачи горючего в камеру сгорания. Главной задачей управления ГТУ является обеспечение нужной мощности. Исключением является газотурбинная энергетическая установка, для которой основная задача управления – постоянство частоты ращения, связанного с турбиной электрического генератора.

Применение в энергетике

В стационарной энергетике применяются ГТУ разного назначения. В качестве основных приводных двигателей электрогенераторов на тепловых электростанциях газотурбинные установки используются в основном в районах с достаточным количеством природного газа. Благодаря возможности быстрого пуска ГТУ широко применяются для покрытия пиковых нагрузок в энергосистемах в периоды максимального потребления энергии. Резервные газотурбинные агрегаты обеспечивают внутренние нужды ТЭС во время остановки основного оборудования.

КПД

В целом электрический КПД газовых турбин ниже, чем у других силовых агрегатов. Но при полной реализации теплового потенциала газотурбинного агрегата значимость этого показателя становится менее актуальной. Для мощных газотурбинных установок существует инженерный подход, предполагающий комбинированное использование двух видов турбин за счет высокой температуры выхлопных газов.

Газотурбинные установки электростанций

Вырабатываемая тепловая энергия идет на производство пара для паровой турбины, которая используется параллельно с газовой. Это повышает электрический КПД до 59% и существенно увеличивает эффективность использования топлива. Недостатком такого подхода является конструктивное усложнение и удорожание проекта. Соотношение производимой ГТУ электрической и тепловой энергии примерно 1:2, то есть на 10 МВт электроэнергии выдается 20 МВт энергии тепловой.

Достоинства и недостатки

К преимуществам газовых турбин относятся:

    Простота устройства. Ввиду отсутствия котельного блока, сложной системы трубопроводов и множества вспомогательных механизмов металлозатраты на единицу мощности у газотурбинных установок значительно меньше.Минимальный расход воды, которая в ГТУ требуется только для охлаждения подаваемого к подшипникам масла.Быстрый ввод в работу. Для газовых турбоагрегатов время пуска из холодного состояния до принятия нагрузки не превышает 20 минут. Для паросиловой установки ТЭС пуск занимает несколько часов.
Газотурбинные установки электростанций

Недостатки:

    В работе газовых турбоагрегатов используется газ с весьма высокой начальной температурой – более 550 градусов. Это вызывает трудности при практическом исполнении газовых турбин, так как требуются специальные жаростойкие материалы и особые системы охлаждения для наиболее нагреваемых частей.Около половины развиваемой турбиной мощности расходуется на привод компрессора.ГТУ ограничены по топливу, используется природный газ или качественное жидкое топливо.Мощность одной газотурбинной установки ограничена 150 МВт.

Экология

Позитивным фактором использования ГТУ является минимальное содержание вредных веществ в выбросах. По этому критерию газовые турбины опережают ближайшего конкурента – поршневые электростанции. Благодаря своей экологичности газотурбинные агрегаты без проблем можно размещать в непосредственной близости от мест проживания людей. Низкое содержание вредных выбросов при эксплуатации ГТУ позволяет экономить средства при строительстве дымовых труб и приобретении катализаторов.

Газотурбинные установки электростанций

Экономика ГТУ

На первый взгляд, цены на газотурбинные установки довольно высоки, но при объективной оценке возможностей этого энергетического оборудования все аспекты встают на свои места. Высокие капиталовложения на старте энергетического проекта полностью компенсируются незначительными расходами при последующей эксплуатации. Кроме того, значительно снижаются экологические платежи, уменьшаются затраты на покупку электрической и тепловой энергии, снижается влияние на окружающую среду и население. Вследствие перечисленных причин ежегодно приобретаются и устанавливаются сотни новых газотурбинных установок.

Источник

www.obovsyom.ru

Газовая турбина. Устройство и принцип действия. Промышленное оборудование :: SYL.ru

«Турбонаддув», «турбореактивные», «турбовинтовые», - эти термины прочно вошли в лексикон инженеров XX века, занимающихся проектированием и обслуживанием транспортных средств и стационарных электрических установок. Их применяют даже в смежных областях и рекламе, когда хотят придать названию продукта какой-то намек на особую мощность и эффективность. В авиации, ракетах, кораблях и на электростанциях чаще всего применяется газовая турбина. Как она устроена? Работает ли на природном газе (как можно подумать из названия), и какими вообще они бывают? Чем турбина отличается от других типов двигателя внутреннего сгорания? В чем ее преимущества и недостатки? Попытка как можно полнее ответить на эти вопросы предпринята в этой статье.

газовая турбина

Российский машиностроительный лидер ОДК

России, в отличие от многих других независимых государств, образовавшихся после распада СССР, удалось в значительной мере сохранить машиностроительную промышленность. В частности, производством силовых установок особого назначения занимается фирма «Сатурн». Газовые турбины этой компании находят применение в судостроении, сырьевой отрасли и энергетики. Продукция высокотехнологична, она требует особого подхода при монтаже, отладке и эксплуатации, а также специальных знаний и дорогостоящей оснастки при плановом обслуживании. Все эти услуги доступны заказчикам фирмы «ОДК - Газовые турбины», так сегодня она называется. Таких предприятий в мире не так уж много, хотя принцип устройства главной продукции на первый взгляд несложен. Имеет огромное значение накопленный опыт, позволяющий учитывать многие технологические тонкости, без чего добиться долговечной и надежной работы агрегата невозможно. Вот лишь часть ассортимента продукции ОДК: газовые турбины, электростанции, агрегаты для перекачки газа. Среди заказчиков – "Росатом", "Газпром" и другие «киты» химической промышленности и энергетики.

Изготовление таких сложных машин требует в каждом случае индивидуального подхода. Расчет газовой турбины в настоящее время полностью автоматизирован, но имеют значение материалы и особенности монтажных схем в каждом отдельном случае.

А начиналось все так просто…

одк газовые турбины

Поиски и пар

Первые опыты преобразования поступательной энергии потока во вращательную силу человечество провело еще в глубокой древности, применив обычное водяное колесо. Все предельно просто, сверху вниз течет жидкость, в ее поток помещаются лопатки. Колесо, снабженное ими по периметру, крутится. Так же работает и ветряная мельница. Затем настал век пара, и вращение колеса убыстрилось. Кстати, так называемый «эолипил», изобретённый древним греком Героном примерно за 130 лет до Рождества Христова, представлял собой паровой двигатель, работающий именно по такому принципу. В сущности, это была первая известная исторической науке газовая турбина (ведь пар - это газообразное агрегатное состояние воды). Сегодня все же принято разделять эти два понятия. К изобретению Герона тогда в Александрии отнеслись без особого восторга, хотя и с любопытством. Промышленное оборудование турбинного типа появилось только в конце XIX века, после создания шведом Густафом Лавалем первого в мире активного силового агрегата, оснащенного соплом. Примерно в том же направлении работал инженер Парсонс, снабдив свою машину несколькими функционально связанными ступенями.

Рождение газовых турбин

Столетием ранее некоему Джону Барберу пришла в голову гениальная мысль. Зачем нужно сначала нагревать пар, не проще ли использовать непосредственно выхлопной газ, образующийся при сгорании горючего, и тем самым устранить ненужное посредничество в процессе преобразования энергии? Так получилась первая настоящая газовая турбина. Патент 1791 года излагает основную идею использования в безлошадной повозке, но его элементы сегодня применяются в современных ракетных, авиационных танковых и автомобильных моторах. Начало процессу реактивного двигателестроения дал в 1930 году Фрэнк Уиттл. Ему пришла идея использовать турбину для приведения в движение самолета. В дальнейшем она нашла развитие в многочисленных турбовинтовых и турбореактивных проектах.

сатурн газовые турбины

Газовая турбина Николы Тесла

Знаменитый ученый-изобретатель всегда подходил к изучаемым вопросам нестандартно. Для всех казался очевидным тот факт, что колеса с лопатками или лопастями «улавливают» движение среды лучше, чем плоские предметы. Тесла, в свойственной ему манере, доказал, что если собрать роторную систему из дисков, расположениях на оси последовательно, то за счет подхватывания пограничных слоев потоком газа, она будет вращаться не хуже, а в некоторых случаях даже лучше, чем многолопастный пропеллер. Правда, направленность подвижной среды должна быть тангенциальной, что в современных агрегатах не всегда возможно или желательно, но зато существенно упрощается конструкция, - в ней совершенно не нужны лопатки. Газовой турбины по схеме Тесла пока не строят, но возможно, идея лишь ждет своего времени.

Принципиальная схема

Теперь о принципиальном устройстве машины. Она представляет собой совокупность вращающейся системы, насаженной на ось (ротора) и неподвижной части (статора). На валу размещен диск с рабочими лопатками, образующими концентрическую решетку, на них воздействует газ, подаваемый под давлением через специальные сопла. Затем расширившийся газ поступает на крыльчатку, также оборудованную лопатками, называемыми рабочими. Для впуска воздушно-топливной смеси и выпуска (выхлопа) служат особые патрубки. Также в общей схеме участвует компрессор. Он может быть выполнен по различному принципу, в зависимости от требуемого рабочего давления. Для его работы от оси отбирается часть энергии, идущая на сжатие воздуха. Газовая турбина работает за счет процесса сгорания воздушно-топливной смеси, сопровождающегося значительным увеличением объема. Вал вращается, его энергию можно использовать полезно. Такая схема называется одноконтурной, если же она повторяется, то ее считают многоступенчатой.

 промышленное оборудование

Достоинства авиационных турбин

Примерно с середины пятидесятых годов появилось новое поколение самолетов, в том числе и пассажирских (в СССР это Ил-18, Ан-24, Ан-10, Ту-104, Ту-114, Ту-124 и т. д.), в конструкции которых авиационные поршневые двигатели окончательно и бесповоротно были вытеснены турбинными. Это свидетельствует о большей эффективности такого типа силовой установки. Характеристики газовой турбины превосходят параметры карбюраторных моторов по многим пунктам, в частности, по отношению мощность/вес, которое для авиации имеет первостепенное значение, а также по не менее важным показателям надежности. Ниже расход топлива, меньше подвижных деталей, лучше экологические параметры, снижен шум и вибрации. Турбины менее критичны к качеству горючего (чего нельзя сказать о топливных системах), их легче обслуживать, они требуют не так много смазочного масла. В общем, на первый взгляд кажется, что состоят они не из металла, а из сплошных достоинств. Увы, это не так.

лопатки газовой турбины

Есть у газотурбинных двигателей и недостатки

Газовая турбина во время работы нагревается, и передает тепло окружающим ее элементам конструкции. Особенно это критично опять же в авиации, при использовании реданной схемы компоновки, предполагающей омывание реактивной струей нижней части хвостового оперения. Да и сам корпус двигателя требует особой теплоизоляции и применения особых тугоплавких материалов, выдерживающих высокие температуры.

Охлаждение газовых турбин – сложная техническая задача. Шутка ли, они работают в режиме фактически перманентного взрыва, происходящего в корпусе. КПД в некоторых режимах ниже, чем у карбюраторных моторов, впрочем, при использовании двухконтурной схемы этот недостаток устраняется, хотя усложняется конструкция, как и в случае включения в схему компрессоров «дожима». Разгон турбин и выход на рабочий режим требует некоторого времени. Чем чаще происходит запуск и остановка агрегата, тем быстрей он изнашивается.

расчет газовой турбины

Правильное применение

Что же, без недостатков ни одна система не обходится. Важно найти такое применение каждой из них, при котором ярче проявятся ее достоинства. Например, танки, такие как американский «Абрамс», в основе силовой установки которого – газовая турбина. Его можно заправлять всем, что горит, от высокооктанового бензина до виски, и он выдает большую мощность. Пример, возможно, не очень удачный, так как опыт применения в Ираке и Афганистане показал уязвимость лопаток компрессора к воздействию песка. Ремонт газовых турбин приходится производить в США, на заводе-изготовителе. Отвести танк туда, потом обратно, да и стоимость самого обслуживания плюс комплектующие…

Вертолеты, российские, американские и других стран, а также мощные быстроходные катера в меньшей степени страдают от засорений. В жидкостных ракетах без них не обойтись.

Современные боевые корабли и гражданские суда также имеют газотурбинные двигатели. А еще энергетика.

характеристики газовой турбины

Тригенераторные электростанции

Проблемы, с которыми сталкивались авиастроители, не так волнуют тех, кто производит промышленное оборудование для производства электроэнергии. Вес в этом случае уже не так важен, и можно сосредоточиться на таких параметрах, как КПД и общая эффективность. Генераторные газотурбинные агрегаты имеют массивный каркас, надежную станину и более толстые лопасти. Выделяемое тепло вполне возможно утилизировать, используя для самых различных нужд, - от вторичного рециклинга в самой системе, до отопления бытовых помещений и термального питания холодильных установок абсорбционного типа. Такой подход называется тригенераторным, и КПД в этом режиме приближается к 90 %.

Ядерные энергоустановки

Для газовой турбины не имеет принципиальной разницы, каков источник разогретой среды, отдающей свою энергию ее лопаткам. Это может быть и сгоревшая воздушно-топливная смесь, и просто перегретый пар (не обязательно водяной), главное, чтобы он обеспечивал ее бесперебойное питание. По своей сути энергетические установки всех атомных электростанций, подводных лодок, авианосцев, ледоколов и некоторых военных надводных кораблей (ракетный крейсер «Петр Великий», например) имеют в своей основе газовую турбину (ГТУ), вращаемую паром. Вопросы безопасности и экологии диктуют закрытый цикл первого контура. Это означает, что первичный тепловой агент (в первых образцах эту роль выполнял свинец, сейчас его заменили парафином), не покидает приреакторной зоны, обтекая тепловыделяющие элементы по кругу. Нагрев рабочего вещества осуществляется в последующих контурах, и испаренный углекислый газ, гелий или азот вращает колесо турбины.

охлаждение газовых турбин

Широкое применение

Сложные и большие установки практически всегда уникальны, их производство ведется малыми сериями или вообще изготовляются единичные экземпляры. Чаще всего агрегаты, выпускаемые в больших количествах, находят применение в мирных отраслях хозяйства, например, для перекачки углеводородного сырья по трубопроводам. Именно такие и производятся компанией ОДК под маркой «Сатурн». Газовые турбины насосных станций полностью соответствуют по назначению своему названию. Они действительно качают природный газ, используя для своей работы его же энергию.

www.syl.ru

особенности конструкции и принцип работы

Газотурбинные установки (ГТУ) востребованы в промышленности, транспортной сфере, широко используются в энергетической отрасли. Это не очень сложное по конструкции оборудование, которые имеет высокий КПД и экономично в использовании.

Газовые турбины во многом схожи с двигателями, работающими на дизеле или бензине: как и в ДВС, тепловая энергия, получаемая при сгорании топлива, переходит в механическую. При этом в установках открытого типа используются продукты сгорания, в закрытых системах - газ или обычный воздух. Одинаково востребованы и те, и другие. Кроме открытых и закрытых, различают турбокомпрессорные турбины и установки со свободно-поршневыми газогенераторами.

Проще всего рассмотреть конструкцию и принцип работы газовой турбины на установке турбокомпрессорного типа, которая работает при постоянном давлении.

Конструкция газовой турбины

Газовая турбина состоит из компрессора, воздухопровода, камеры сгорания, форсунки, проточной части, неподвижных и рабочих лопаток, патрубка для отработанных газов, редуктора, гребного винта и пускового двигателя.

За запуск турбины отвечает пусковой двигатель. Он приводит в движение компрессор, который раскручивается до нужной частоты вращения. Затем:

  • компрессор захватывает воздух из атмосферы и сжимает его;
  • воздух отправляется в камеру сгорания через воздухопровод;
  • через форсунку в ту же камеру входит топливо;
  • газ и воздух смешиваются и сгорают при постоянном давлении, в результате образуются продукты сгорания;
  • продукты сгорания охлаждают с помощью воздуха, после чего они поступают в проточную часть;
  • в неподвижных лопатках смесь газов расширяется и ускоряется, затем направляется на рабочие лопатки и приводит их в движение;
  • отработанная смесь выходит из турбины, по патрубку;
  • турбина передает кинетическую энергию компрессору и гребному винту посредством редуктора.

Таким образом, газ в смеси с воздухом, сгорая, образует рабочую среду, которая, расширяясь, ускоряется и раскручивает лопатки, а за ними - и гребной винт. В последующем кинетическая энергия превращается в электричество или используется для передвижения морского судна.

Сэкономить на топливе можно, используя принцип регенерации тепла. В этом случае воздух, поступающий в турбину, согревается за счет отработанных газов. В результате установка расходует меньше топлива и происходит больше кинетической энергии. Регенератор, где подогревается воздух, одновременно служит для охлаждения отработанных газов.

Особенности ГТУ закрытого типа

Газовая турбина открытого типа забирает воздух из атмосферы и выводит отработанный газ наружу. Это не очень эффективно и опасно, если установка стоит в закрытом помещении, где работают люди. В этом случае используют ГТУ закрытого типа. Такие турбины не выпускают отработанные рабочее тело в атмосферу, а направляют его в компрессор. Оно не перемешивается с продуктами сгорания. Как результат, рабочая среда, циркулирующая в турбине, остается чистой, что увеличивает ресурс установки и сокращает количество поломок.

Однако закрытые турбины имеют слишком большие габариты. Газы, которые не выходят наружу, должны быть достаточно эффективно охлаждены. Это возможно только в больших теплообменниках. Поэтому установки используют на крупных судах, где достаточно места.

Закрытые ГТУ могут иметь и ядерный реактор. В качестве теплоносителя в них используют углекислый газ, гелий или азот. Газ нагревают в реакторе и направляют в турбину.

ГТУ и их отличия от паровых турбин и ДВС

Газовые турбины отличаются от ДВС более простой конструкцией и легкостью ремонта. Важно и то, что в них не предусмотрен кривошипно-шатунный механизм, который делает ДВС громоздким и тяжелым. Турбина легче и меньше двигателя аналогичной мощности приблизительно в два раза. Кроме того, она может работать на топливе низкого сорта.

От паровых газовые турбины отличаются небольшими габаритами и простым запуском. Обслуживать их легче, чем установки, работающие на пару.

Имеют турбины и недостатки: они не настолько экономичны по сравнению с ДВС, сильнее шумят, быстрее приходят в негодность. Впрочем, это не мешает использовать ГТУ в транспорте, промышленности и даже быту. Турбины устанавливают на морских и речных судах, используют в электростанциях, насосном оборудовании и многих других сферах. Они удобны и мобильны, поэтому применяются достаточно часто.

 

23 августа 2017

Поделитесь ссылкой со своими друзьями:

www.ekprometey.ru

Особенности конструкций газовых турбин

Поиск Лекций

 

Главные особенности конструкций газовых турбин по сравнению с паровыми определяются следующими основными факторами:

1. В газовой турбине осуществляется процесс расширения высокотемпературной рабочей среды, что требует использования специальных жаростойких материалов (сталей, сплавов, керамики и теплозащитных покрытий), а также организации охлаждения ее элементов (лопаточного аппарата, ротора с дисками, корпусных деталей, подшипников и пр.).

2. В газовой турбине существенно меньше число ступеней, чем в паровой. При этом ГТ работает при невысоком начальном давлении рабочей среды, удельный объем которой при расширении увеличивается в 5-25 раз (в паровой турбине удельный объем водяного пара растет в сотни раз). Поэтому разница между длиной лопаток первой ступени и последней много меньше, чем для паровой турбины. Средние диаметры турбинных ступеней ГТ больше, чем для ступеней ЦВД ПТ (диаметры дисков ГТ до 2 м), а их внутренняя мощность существенно больше в сравнении с мощностью ступеней паровой турбины.

3. Осевая составляющая скорости потока за последней ступенью газовой турбины составляет 100-230 м/с. Поэтому для снижения потерь энергии выходной патрубок ГТ выполняют осевым на основе высокоэффективного диффузорного канала.

4. Из-за большой роли КПД ГТ в экономичности ГТУ в газовых турбинах нет регулирующих клапанов, парциальных ступеней и прочих элементов, снижающих экономичность установок.

Роторы газовых турбин выполняют в зависимости от их типов дисковыми, барабанными и дискобарабанными (рис. 29.10 - 29.12), а по способу изготовления – цельноковаными и сварными:

а) Более распространены дисковые конструкции роторов, у которых нет центрального отверстия, сокращающего прочностные характеристики.

б) Цельнокованые конструкции роторов ограничены в диаметре из-за технологических ограничений при их изготовлении. Поэтому они применяются в ГТ малой мощности.

в) Сварные роторы лишены этих недостатков, но они дороже при изготовлении.

 

Рис. 29.10 Конструкции роторов газовых турбин

а) цельнокованый ротор барабанной конструкции; б) цельнокованый ротор консольного типа;

в, г) сварные роторы; д, сборный ротор с дисками, соединенными стяжными болтами

 

 

Рис.29.11

 

 

Рис.29.12

 

В сборных конструкциях роторов диски стягиваются с помощью гидравлического устройства центральным стержнем, превращающим ротор в единую жесткую конструкцию. Перед сборкой отдельные диски газовой турбины с лопаточным аппаратом (также и компрессора) подвергаются тщательной балансировке. Каждый из дисков имеет два кольцевых воротника (пояса), на котором выполнены хирты - радиальные зубья треугольного профиля. При хорошем качестве изготовления хиртового соединения обеспечивается абсолютная центровка смежных дисков. Такая конструкция применяется, например, в ГТУ V94.2 «Siemens» и ГТЭ-180. В газовых турбинах серии G фирмы «Westinghouse» диски стягиваются 12 сквозными болтами. В энергетической ГТУ GT13E «АВВ» применяется сварной ротор. На рис. 29.12 показан внешний вид роторов компрессора и газовой турбины ГТУ GT 13E .

Рис. 29.12 Конструкция ротора GT 13E

 

Корпус газовой турбины в отличие от корпусов паровой турбины эксплуатируется в условиях более высоких температур, но при меньшем перепаде давлений, действующих на стенки корпуса. Корпусные элементы ГТ изготавливают из перлитных сталей. В большинстве конструкций корпус имеет горизонтальный разъем. Основное требование к корпусам ГТ – жесткость их конструкции, обеспечение равномерной толщины стенок для исключения формирования температурных напряжений и соответствующих деформаций, симметричность в поперечных сечениях с целью организации одинаковых зазоров между рабочими лопатками и корпусом. Эти зазоры для уменьшения протечек выполняются минимальными в радиальном направлении. В лабиринтовых надбандажных и диафрагменных уплотнениях ступеней ГТ (а также компрессоров) применяются сотовые вставки, истирающиеся при задеваниях, что предотвращает развитие аварийных ситуаций. Для уменьшения температуры стенок корпуса его иногда изнутри закрывают жароупорным экраном из тонкостенного листа аустенитной стали. Между ними закладывают теплоизоляционный материал. В ряде случаев в начальной части ГТ применяется двухкорпусное исполнение, когда между соответствующими стенками организуется движение охлаждающего воздуха.

Одной из основных ГТУ, на базе которой планируется создание ПГУ-325 и других, является ГТЭ-110 мощностью 110 МВт (рис. 29.13). Она имеет относительно высокий уровень экономичности (КПД 36%) при уровне начальной температуры газов 1210°С, но с низкой температурой уходящих газов (517°С), что затрудняет получить высокий уровень экономичности парогазовых установок. Номинальная мощность ГТУ при расчетных условиях 114,5 МВт (КПД 36,5%), а пиковая – 120 МВт (КПД 36%). Максимальная мощность при температуре наружного воздуха tа=–15оС NЭ=129,4 МВт. Степень повышения давления в компрессоре при номинальной мощности ГТУ pк=14,75. Расход выходных из турбины газов 365 кг/с.

Ротор барабанно-дисковой конструкции состоит из пяти частей, соединяемых между собой штифтовыми и болтовыми соединениями. Диски компрессора и турбины в секциях соединяются электронно-лучевой сваркой. Радиальные подшипники диаметром 400 мм выполнены с самоустанавливающимися колодками. Между сегментами расположены форсунки для подачи масла на смазку и охлаждения. Осевой подшипник обеспечивает двухстороннее восприятие осевой нагрузки. Он установлен со стороны компрессора в его холодной части. В осевом подшипнике относительно гребня установлены 28 колодок по 14 с каждой стороны.

Рис. 29.13. Газотурбинная установка ГТЭ-110

1 – ВНУ; 2 – компрессор; 3 – камера сгорания; 4 – газовая турбина; 5 – рама

 

Система охлаждения газовой турбины - конвективная. В турбине охлаждаются рабочие лопатки первых двух ступеней и сопловые – трех. Суммарный расход воздуха на охлаждение 13%. Компрессор имеет 15 ступеней, его сварной корпус выполнен из стали ЭП609Ш. Над рабочими лопатками 1-й и 2-й ступеней сконструированы антипомпажные устройства в форме кольцевых камер, в которые воздух попадает через щели. Рабочие лопатки первых четырех ступеней изготовлены из титанового сплава ВТЗ-1, с 5-й по 12-ю ступень - из стали ЭИ 479Ш, а с 13-й по 15-ю – ЭИ 696Ш. Диски компрессора выполнены из стали ЭП609. Отбор воздуха за 7-й ступенью предназначен для охлаждения дисков компрессора, а за 10-й – для охлаждения ротора газовой турбины.

Трубчато-кольцевая камера сгорания с 20 жаровыми трубами располагается над компрессором, что сокращает длину валопровода и делает его более жестким. Сопловые аппараты турбинных ступеней газовой турбины устанавливаются в своих наружных корпусах. Корпус турбины имеет только вертикальные разъемы. Сопловой аппарат 1-й ступени состоит их 40 отдельных литых лопаток с конвективно-пленочным охлаждением вторичным воздухом. Сопловой аппарат 2-й ступени состоит из 24 пакетов лопаток, отлитых блоками по две лопатки, 3-й – из 18 пакетов по три лопатки, а 4-й – из 16 пакетов по три лопатки (полые, неохлаждаемые). Все пакеты имеют в отливке диафрагменные поверхности.

Крепление ГТУ осуществляется одной передней и двумя задними опорами. Передняя опора неподвижная и представляет собой жесткий лист с ребрами, который крепится к фланцу переднего корпуса компрессора. Задние опоры крепятся к цапфе опорного венца турбины и состоят из гибких листов, установленных в два яруса во взаимно перпендикулярных направлениях. Кожух ГТУ выполняется на основе панельно-каркасной конструкции с толщиной панели 80 мм. Пуск ГТУ осуществляется от электрогенератора через тиристорный преобразователь частоты тока.

 

 

poisk-ru.ru

Принцип работы ГТУ — Энергодиспетчер

В последнее время благодаря СМИ  у  читателя на слуху такие понятия как  газотурбинная установка ГТУ или  парогазовая установка ПГУ (недавно мы публиковали познавтельную статью «Принцип работы ПГУ«.

То и дело в новостях говорят, что, к примеру, на такой то ГРЭС полным  ходом идет строительство  ПГУ -400 МВт, а на другой ТЭЦ-2 включена в  работу установка ГТУ-столько то МВт.  О таких событиях пишут, их освещают, поскольку включение таких мощных и эффективных агрегатов — это не только «галочка» в выполнении государственной программы, но и реальное повышение эффективности работы электростанций, областной энергосистемы и даже объединенной энергосистемы.

Но довести до сведения хочется не о выполнении госпрограмм или прогнозных показателей, а именно о ПГУ и ГТУ.  В этих двух терминах может запутаться не только обыватель, но и начинающий энергетик.

Начнем с того, что проще.

ГТУ — газотурбинная установка — это газовая турбина и электрический генератор, объединенные в одном  корпусе. Ее выгодно устанавливать на ТЭЦ. Это эффективно, и многие реконструкции ТЭЦ направлены на установку  именно таких турбин.

Вот  упрощенный цикл работы тепловой станции:

gtu

Газ (топливо) поступает в котел, где сгорает и передает тепло воде, которая выходит из котла в виде пара и крутит паровую турбину. А паровая турбина крутит генератор. Из генератора мы получаем электроэнергию, а пар для промышленных нужд (отопление, подогрев) забираем из турбины при необходимости.

А в газотурбиной  установке газ сгорает и крутит газовую турбину, которая вырабатывают электроэнергию, а выходящие газы превращают воду в пар в котле-утилизаторе, т.е. газ работает с двойной пользой: сначала сгорает и крутит турбину, затем  нагревает воду в котле.

gtu2

А если саму газотурбинную установку показать еще более развернуто, то будет выглядеть так:

gtu

На этом видео наглядно показано какие процессы происходят в газотурбинной установке.

Но еще больше пользы будет в том случае, если и полученный пар заставить работать — пустить его в паровую турбину, чтобы работал еще один генератор!  Вот тогда наша ГТУ станет ПАРО-ГАЗОВОЙ УСАНОВКОЙ (ПГУ).

gtu4

В итоге ПГУ — это более широкое понятие. Эта установка – самостоятельный энергоблок, где топливо используется один раз, а электроэнергия вырабатывается дважды: в газотурбинной установке и в паровой турбине. Этот цикл очень эффективный, и имеет КПД порядка 57 %! Это очень хороший результат, который позволяет значительно снизить расход топлива на получение киловатт-часа электроэнергии!

В Беларуси для повышения эффективности работы электростанций применяют ГТУ как «надстройку» к существующей схеме ТЭЦ, а ПГУ возводят на ГРЭСах, как самостоятельные энергоблоки. Работая на электростанциях, эти газовые турбины не только повышают «прогнозные технико-экономические показатели», но и улучшают управление генерацией, так как имеют высокую маневренность: быстроту пуска и набора мощности.

Вот какие полезные эти газовые турбины!

operby.com

Эксплуатация газотурбинных установок. Оценка качества работы ГТУ. Обслуживание, Пуск, Останов газотурбинной установоки



Оценка качества работы ГТУ

Газотурбинные установки работают по определенному графику, называемому диспетчерским и устанавливающему вырабатываемую мощность и время, когда эта мощность должна быть выработана. Чтобы обеспечивать работу в таком режиме, ГТУ должны быть надежны. Вместе с тем заданная мощность должна вырабатываться с наименьшими затратами, т.е. ГТУ должны быть экономичными.

Надежной считается установка, способная без перерывов, вызванных неполадками и авариями, устойчиво работать в течение межремонтного периода на заданных режимах.

Для планирования выработки мощности необходимо иметь количественную оценку надежности. Одной из таких оценок является коэффициент готовности. Газотурбинные установки не все календарное время находятся в работе. Часть времени они стоят в резерве. Кроме того, обязательно выделяется время, необходимое для плановых обслуживания, среднего и капитального ремонтов. От надежности установки зависит время вынужденного простоя в результате аварий и неполадок.

Коэффициент готовности — представляет собой вероятность работоспособности ГТУ в периоды между остановами на плановые ремонты и обслуживание.

Отношение времени нахождения ГТУ в резерве к количеству отказов а называют средней наработкой на отказ.

Коэффициент технического использования представляет собой вероятность работоспособности ГТУ в течение заданного календарного времени.

Наиболее часто условия эксплуатации газотурбинных установок оцениваются коэффициентами рабочего времени и использования установленной мощности.

При эксплуатации важно знать, что газотурбинные установки можно запустить в нужный момент. На практике не все запуски бывают удачными. Надежность ГТУ при пусках характеризуют два показателя: коэффициент безотказности пусков и наработка на запуск.

Коэффициент безотказности пусков определяет долю удачных пусков в их общем числе.

Наработка на запуск равна среднему времени работы на один удачный пуск. Эти показатели используются для количественной оценки эксплуатационных качеств базовых ГТУ.

Пиковые ГТУ значительную часть времени находятся в резерве. В течение этого времени могут быть выполнены многие работы по их обслуживанию и ремонту, т.е. время их нахождения в резерве и время вынужденного простоя частично перекрываются. Поэтому для оценки надежности пиковых ГТУ используют условный коэффициент готовности.

Установлены нормы на коэффициенты, определяющие надежность ГТУ. Так, коэффициенты готовности и технического использования энергетических ГТУ соответственно составляют 0,98 и 0,92, а наработка на отказ — около 3000 ч. Коэффициент готовности пиковых ГТУ равен 0,97—0,98.

Почти три четверти неполадок ГТУ возникает вследствие дефектов оборудования. Вместе с тем доля неполадок, возникающих в результате нарушения режимов эксплуатации, также велика и составляет от 10 до 25%. Причинами этого являются ошибки при управлении газотурбинной установки и ее техническом обслуживании.

Экономичность ГТУ тесно связана с надежностью, хотя прежде всего она определяется условиями эксплуатации. Ряд факторов, влияющих на экономичность ГТУ, не зависит от обслуживающего персонала (уровень вырабатываемой мощности, количество и частота пусков, используемое топливо, параметры и состояние окружающей среды). В то же время персонал может влиять на экономичность, поддерживая номинальные температуру и давление газа перед турбиной, экономно используя топливо, увеличивая скорость пуска, а также совершенствуя качество эксплуатации и технического обслуживания.

Своевременная очистка проточной части компрессоров и турбин, а также трактов теплообменных аппаратов позволяет поддерживать их кпд на заданном уровне и уменьшить потери. Утечки воздуха и газа, топлива, масла и воды обнаруживают при внешнем осмотре ГТУ и принимают срочные меры по устранению неплотностей.

Обслуживание газотурбинных установок при устойчивой работе на номинальных и частичных нагрузках

Уровень технической эксплуатации ГТУ зависит от квалификации оперативного и ремонтного персонала, который должен своевременно и аккуратно проводить проверочные и регулировочные работы, обнаруживать и устранять неполадки, постоянно следить за качеством топлива, масла, воздуха, охлаждающей воды.

В обязанности оперативного персонала входят прежде всего осмотр и прослушивание ГТУ, а также наблюдение за показаниями приборов. Анализ показаний приборов позволяет регулярно оценивать состояние газотурбинной установки: соответствие ее мощности, а также неравномерности температур газа перед турбиной, давления топлива, воздуха и газа, вибрации оборудования установленным нормам; запас устойчивости компрессора по помпажу; степень загрязнения проточных частей турбины и компрессора, теплообменников.

Недопустимое повышение температуры газа перед турбиной может быть признаком повреждения как самой турбины, так и теплообменных аппаратов, возникновения в компрессоре срывов или уменьшения расходов воздуха.

Каждой исправной ГТУ свойствен нормальный шум. Если при эксплуатации ГТУ характер шума изменяется, появляются посторонние звуки, пульсации шума и удары, то это означает, что компрессор попал в помпаж или работает на его границе.

Удары, стук, скрежет свидетельствуют прежде всего о поломках лопаточного аппарата или задеваниях. Чтобы правильно определить характер и причину неполадок, необходимо привыкнуть к шуму нормально работающей ГТУ. Для точного определения состояния оборудования его прослушивают, применяя стетоскопы — "слухачи".

Важным показателем нормального состояния оборудования ГТУ является уровень его вибрации. Необходимо не только знать, укладывается ли амплитуда вибрации в установленные нормы, но и как она изменяется со временем и какова ее частота. Эти данные помогают определить характер и место возникновения неполадок. Так, частота колебаний, меньшая частоты вращения ротора, возникает в результате его неустойчивости на масляной пленке подшипников; частота, равная частоте вращения ротора — при его разбалансировке и задеваниях, а равная двойной частоте вращения — при прогибе вала и расцентровке муфт.

Под постоянным контролем должно находиться взаимное расположение ротора и статора. Чрезмерное осевое перемещение ротора может привести к задеваниям и свидетельствует о срабатывании колодок упорного подшипника. Кроме того, контролируется состояние самих подшипников: по температуре масла и баббитовой заливки, а также по качеству масла, его расходу.

О нормальной работе камер сгорания газотурбинных установок судят прежде всего по неравномерности температур газа перед турбиной, а также по давлению топлива и характеру дыма. Уменьшение давления топлива при постоянной нагрузке турбины связано с износом форсунок, а увеличение — с их загрязнением. Изменение интенсивности дымления, появление беглого или темного дыма может быть признаком повреждения пламенных труб и трактов отработавшего газа. В темном дыме содержится большое количество сажи, а в белом — несгоревшего топлива. Белый дым может появиться в результате погасания одной или нескольких камер сгорания. Для обеспечения надежной работы ГТУ не реже чем один раз в 4 месяца проверяют автомат безопасности без увеличения частоты вращения и защиту от недопустимого повышения температуры газа перед турбиной.

Оперативный персонал, должен постоянно следить за работой воздухозаборных устройств. Для уменьшения запыленности воздуха площадки перед воздухозаборниками поливают. Содержание пыли в воздухе после фильтров на входе в компрессор должно быть не более 0,3 мг/м3; при этом размеры пылинок должны быть не более 15 мкм. При каждом останове ГТУ фильтры очищают, а сборные короба освобождают от пыли и шлака. О нормальной работе фильтров можно судить по отсутствию выноса масла и нормальному перепаду давлений на них. Если фильтры засорены и давление перед компрессором недопустимо уменьшилось, должен автоматически открыться подвод воздуха помимо них (байпас).

Масляная система обеспечивает надежную работу ГТУ и вспомогательного оборудования. Основным условием надежной работы ГТУ является постоянное снабжение оборудования маслом. Чтобы не произошло случайного закрытия задвижек и вентилей системы маслоснабжения, все их маховики пломбируются в рабочем положении. Это прежде всего относится к маховикам задвижек и вентилей до и после маслоохладителей, на всасе и напоре резервных и аварийных маслонасосов, до и после фильтров, а также на аварийном сливе из маслобака.

Пиковые ГТУ большую часть времени не работают. Однако и они должны постоянно обслуживаться оперативным персоналом. Даже если ГТУ не работает, один раз в смену следует проверять исправность оборудования и систем и один раз в неделю запускать и нагружать ГТУ, чтобы убедиться в ее работоспособности.

Пуск газотурбинной установки (ГТУ)

Пуск ГТУ — ответственная операция, которую надо проводить, соблюдая правила технической эксплуатации и безопасности.

Перед пуском ГТУ следует убедиться в исправности ее основного и вспомогательного оборудования, систем регулирования и защиты. Кроме того, необходимо удостовериться, что монтажные, ремонтные работы и техническое обслуживание закончены, посторонние лица около ГТУ и внутри нее отсутствуют. Предварительно должно быть проверено качество топлива и масла. Если оно не удовлетворяет установленным нормам, пуск ГТУ запрещается.

Нельзя запускать ГТУ, если неисправна или отключена какая-либо защита или система регулирования, неисправен один из маслонасосов или не работает система их автоматического включения при недопустимом уменьшении давления масла в системе смазки. Пуск ГТУ проводится автоматически. Действиями обслуживающего персонала руководит начальник смены. После капитального или текущего ремонта пуск ГТУ ведется под руководством начальника цеха или его заместителя. Собственно пуск ГТУ можно разделить на несколько этапов (рис.1).

Характерные этапы пуска ГТУ

Рис.1. Характерные этапы пуска ГТУ: 1 - запуск пускового двигателя,2 - зажигание топлива в камере сгоравия,3 - выход на режим работы вблизи границы помпажа,4 - выход на режим работы с предельной температурой газа перед турбиной,5 - работа при постоянном расходе топлива, равном расходу на холостом ходу,6 - работа на холостом ходу

На нервом этапе ротор газотурбинной установки раскручивают пусковым двигателем, так как она не может запуститься самостоятельно. Мощность пускового устройства составляет 1—6% от мощности ГТУ. Этому этапу соответствует участок 1-2. При частоте вращения 20—35% от номинальной количества воздуха, подаваемого компрессором, достаточно для устойчивого горения топлива в камере сгорания.

Затем в камеру сгорания подается и зажигается топливо, и практически мгновенно температура и давление в ней резко возрастают (точка 3). Расход рабочего газа при этом немного уменьшается. Частота вращения ротора за это время практически не успевает измениться и можно считать, что участок 2-3 соответствует постоянной частоте вращения. При зажигании топлива система регулирования должна обеспечить такое его количество, чтобы компрессор не попал в помпаж (точка 3 находится правее границы помпажа - пунктирная линия).

Следующий этап — увеличение частоты вращения ротора. Раскручивать ротор нужно по возможности быстрее, не допуская опять-таки помпажа. Система регулирования должна обеспечивать такой режим раскрутки, при котором гарантируется некоторый запас по отношению к границе помпажа (участок 3—4).

При пониженных частотах с этой целью через антипомпажный клапан может сбрасываться до 30% воздуха, проходящего через компрессор.

При определенной частоте вращения турбина начинает вырабатывать такую мощность, что далее может вращать ротор ГТУ самостоятельно. Такой режим называют режимом самоходности (расход Gc и степень сжатия ес). Пусковое устройство при этом отключается.

Вследствие сжигания в камере сгорания все большего количества топлива увеличивается частота вращения ротора и растет температура газа перед турбиной, которая, наконец, достигает предельного значения (точка 4). Так как больше увеличивать температуру газа нельзя, система регулирования автоматически ограничивает увеличение расхода топлива, но он продолжает расти, так как нужно увеличивать частоту вращения ротора и, следовательно, вырабатываемую турбиной мощность. Однако система регулирования подает столько топлива, чтобы температура рабочего газа перед турбиной сохранялась постоянной (участок 4-5).

Наконец, расход топлива становится таким, каким он должен быть на холостом ходу (точка 5). Для плавного выхода на холостой ход без резкого увеличения частоты вращения (заброса) система регулирования сохраняет расход топлива постоянным (участок 5-6) до тех пор, пока частота вращения ротора не станет равной его частоте вращения на холостом ходу.

После того как ГТУ начнет устойчиво работать на холостом ходу, ее можно нагружать, увеличивая расход топлива. Если потребителем мощности является электрический генератор, его следует предварительно включить в сеть. Для этого надо так плавно регулировать частоту вращения ротора газотурбинных установок, чтобы совпали не только частоты эдс на шинах электрического генератора и сети, но и их фазы. Эта процедура называется синхронизацией генератора. В момент совпадения частоты и фазы генератор подключается к сети.

Если не провести синхронизацию, то в момент включения генератора в сеть возникает толчок, поворачивающий ротор генератора по окружности настолько, чтобы фазы тока сети и эдс генератора совпали.

Если в результате отказа при зажигании топлива в камере сгорания или по другим причинам пуск ГТУ не состоялся, нельзя без вентиляции трактов подавать, топливо в камеру сгорания и поджигать его. Это необходимо, чтобы удалить топливо, оставшееся в тракте после неудачного пуска. В ином случае возможно взрывообразное возгорание этого топлива (хлопок).

При нарушении установленной последовательности пусковых операций пуск ГТУ прекращается персоналом или защитами, которые срабатывают при повышении температуры газа выше предельной, недопустимом увеличении нагрузки пускового устройства или снижении частоты вращения ротора после отключения пускового устройства, помпаже и в других случаях, предусмотренных местными инструкциями. Кроме того, персонал должен отключить ГТУ при появлении стуков, скрежета и недопустимом увеличении вибрации.

Останов ГТУ

Остановы ГТУ могут быть плановыми и аварийными.

Плановые остановы предусмотрены диспетчерским графиком (в связи со снижением потребляемой мощности), а также планами мероприятий по техническому обслуживанию и ремонту.

При плановом останове вначале проводят разгрузку ГТУ постепенным уменьшением ее мощности, а затем отключают генератор. После прекращения подачи топлива весь тракт ГТУ интенсивно вентилируют. В это же время продувают воздухом или инертным газом топливные коллекторы, форсунки и горелки. Продолжительность продувки устанавливается для каждой ГТУ такой, чтобы оставшееся в тракте после останова топливо успело испариться и было удалено из него для предотвращения образования взрывоопасной смеси. После продувки автоматически закрываются шиберы на всасе или выхлопе, чтобы предотвратить попадание в тракт влаги и пыли вследствие естественной тяги.

При останове ГТУ персонал должен обязательно контролировать время выбега ротора (время полной остановки) и регистрировать его в суточной ведомости. Уменьшение времени выбега ротора свидетельствует о возникновении неполадок в проточной части или подшипниках (например, задевания).

Причина уменьшения времени выбега ротора должна быть определена, а неполадка устранена.

Аварийно газотурбинные установки останавливаются защитами или персоналом. В зависимости от последствий, к которым могут привести неполадки, вызвавшие аварийный останов, ГТУ должна быть отключена немедленно или предварительно разгружена.

Защиты немедленно отключают ГТУ при росте температуры газа перед турбиной выше предельной, недопустимом повышении частоты вращения ротора и его осевом сдвиге, снижении давления масла и его уровня в баке, повышении температуры масла за подшипниками или одной из колодок упорного подшипника. Защиты срабатывают также при погасании факела в камерах сгорания, недопустимом снижении давления топлива, выходе из строя системы регулирования, потери напряжения на всех контрольно-измерительных приборах, отключении генератора, возникновении помпажа и др.

Полный перечень отключений, выполняемых защитами, приведен в местных инструкциях по эксплуатации, где указываются также признаки, по которым можно определить причину останова. Персонал должен в совершенстве знать инструкции, чтобы в очень короткое время после останова определить ситуацию. Отработка навыков быстрого определения причин останова ГТУ по одному или нескольким признакам входит в программу противоаварийной учебы оперативного персонала.

Существуют ситуации, при которых ГТУ также должна быть немедленно остановлена, однако автоматика здесь бессильна и сделать это может только оперативный персонал. Так, персонал должен немедленно остановить ГТУ: при обнаружении трещин или разрывов топливо- и маслопроводов высокого давления; появлении необычных шумов, стука и скрежетов в турбине или компрессоре, а также, искр или дыма из подшипников и концевых уплотнений; внезапной сильной вибрации, взрыве в камерах сгорания или газопроводе; воспламенении масла или топлива вне камеры сгорания и невозможности потушить пожар немедленно.

Полный перечень ситуаций, при которых персонал должен немедленно остановить ГТУ, приведен в местных инструкциях.

Не всякая неполадка немедленно ведет к тяжелым авариям. В некоторых случаях нет необходимости немедленно отключать ГТУ, а целесообразно остановить ее так, как это делают при плановом останове. Это допустимо, например, при заедании стопорных, регулирующих и антипомпажных клапанов, обледенении воздухозаборника, неисправности отдельных защит или оперативных контрольно-измерительных приборов и др. Эти случаи также оговорены в местных инструкциях. Персонал должен четко и безошибочно определять ситуацию и принимать решение о немедленном останове ГТУ или останове с разгрузкой.

Все валы ГТУ оснащены валоповоротными устройствами, которые предназначены для медленного проворачивания нагретых роторов, что необходимо для их равномерного остывания. Если ротор не проворачивать, то в результате более интенсивного остывания нижней части он при естественной конвекции изогнется вверх. Вращение ротора в прогнутом состоянии приводит к задеваниям и повышенной вибрации, что делает невозможным эксплуатацию ГТУ. Время проворачивания и потребная дли этого мощность оговариваются для каждого вала ГТУ. Значение тока, потребляемого электродвигателем валоповоротного устройства, заносят в суточную ведомость при каждом останове ГТУ.

Техническое обслуживание и ремонт ГТУ. Безопасность труда при обслуживании газотурбинных установок

Техническое обслуживание, текущий и капитальный ремонты ГТУ проводятся по планам, которые составляются в соответствии с требованиями инструкций заводов-изготовителей. Периодичность технического обслуживания и ремонтов зависит также от режима работы ГТУ, количества пусков, вида топлива. Кроме того, принимается во внимание состояние основного и вспомогательного оборудования ГТУ.

Операции по техническому обслуживанию проводятся в определенной последовательности и в установленные сроки. На каждой станции утверждается регламент технического обслуживания ГТУ и оговаривается технология выполнения регламентных работ. В регламентные работы входят, например, периодическая очистка турбин, компрессоров и теплообменников, осмотр лопаток турбин и компрессоров, проверка плотности газового и воздушного трактов, трубопроводов, шиберов и арматуры. Важным этапом регламентных работ является проверка исправности системы автоматического регулирования и защиты ГТУ.

Проверку работы автомата безопасности с увеличением частоты вращения ротора проводят после каждой его разборки, перед испытанием ГТУ на сброс нагрузки и после длительного его простоя (более 1 месяца). Не менее одного раза в 4 месяца проверяют исправность защиты от превышения температуры газа перед турбинами.

В программу регламентных работ входят также контрольные пуски ГТУ, при которых измеряют параметры, позволяющие определить соответствие режима пуска заданному режиму.

Система регулирования при мгновенном сбросе нагрузки должна удерживать ГТУ в режиме, при котором не срабатывала бы ни одна из защит, а ГТУ автоматически выходила бы на холостой ход. Регламентными работами предусмотрена проверка системы регулирования мгновенным сбросом максимальной нагрузки отключением генератора от сети.

Для диагностирования состояния ГТУ при ее остановах проводят осмотры, целью которых является непосредственное обнаружение неисправностей (износа форсунок, трещин в лопатках, короблений пламенных труб и др.) или установление их по косвенным признакам (например, по наличию кусочков металла, частей лопаток, или поврежденных деталей на выхлопе). Осмотры могут проводиться как без разборки, так и с частичной или полной разборкой ГТУ.

Целью ремонтов, является проведение плановых восстановительных работ или устранение результатов аварий и неполадок. Примером восстановительных работ является замена рабочих лопаток, отслуживших свой срок по запасу длительной прочности, перезатяжка фланцев турбины, замена пламенных труб, отработавших ресурс, перезаливка баббита подшипников. Характер ремонтных работ после аварий зависит от вида разрушений и их последствий. В некоторых случаях восстановительные работы приходится выполнять на заводе-изготовителе.

Все работы по оперативному и техническому обслуживанию ГТУ должны выполняться качественно, в срок, без ущерба для безопасности и здоровья обслуживающего и ремонтного персонала. Обслуживание ГТУ, проведение регламентных и ремонтных работ должны быть организованы так, чтобы производственные травмы и несчастные случаи были исключены. Каждый работник должен знать и строго выполнять правила безопасного обслуживания и проведения ремонтных работ. Администрация обязана обеспечить организационные и технические мероприятия по созданию безопасных условий труда.

Регулярный инструктаж, обучение персонала и постоянный контроль за соблюдением правил техники безопасности на электростанциях обязательны. Ответственность за несчастные случаи несет как администрация, не обеспечивая соблюдение правил безопасного производства работ, так и лица, нарушившие эти правила.

Производственный персонал должен уметь освобождать попавшего под напряжение и оказывать ему первую помощь, а также оказывать первую помощь пострадавшим при других несчастных случаях.

По характеру производственных процессов ГТУ являются агрегатами повышенной пожаро- и взрывоопасности и требуют обеспечения электробезопасности. В этих условиях строжайшее соблюдение правил техники безопасности является насущной и ежедневной необходимостью.



www.gigavat.com


Смотрите также