Обслуживание холодильных установок. Монтаж холодильных установок


Обслуживание холодильных установок

Обслуживание холодильных установок заключается в постоянном контроле за работой компрессоров, теплообменных аппаратов, приборов автоматики и в поддержании оптимального режима работы. При работе аммиачных компрессоров необходимо следить за температурой перегревапаров хладагента. Чрезмерный перегрев аммиака может быть вызван недостаточным открытием регулирующего вентиля перед испарителем или наличием воздуха в системе.

При работе установки могут появиться различные стуки в компрессоре, причины и характер которых весьма разнообразны. Они различаются по месту возникновения, тону, продолжительности и повторяемости. Причиной глухих стуков внутри картера, несколько усиливающихся в местах установки коренных подшипников и повторяющихся при каждом обороте коленчатого вала, является недостаточное поступление масла к коренным подшипникам. Стуки среднего тона, отчетливо слышимые в верхней части цилиндров и едва различимые в картере, появляются из-за сильного износа втулок верхних головок шатуна. При возникновении стука, не характерного для нормальной работы компрессора, необходимо его выключить и устранить причину стука.

В процессе работы установки надо следить за давлением (температурой) конденсации. Повышенное давление в конденсаторе может возникнуть из-за неправильного положения заслонок на входе воздуха в шахту конденсатора или пробуксовывания клиновых ремней на шкиве вентилятора.

Приборы автоматического регулирования обеспечивают постоянный уровень жидкого аммиака в испарителе и промежуточном сосуде. При неисправности этих приборов требуемый уровень аммиака следует поддерживать с помощью ручных регулирующих вентилей. Если в испаритель или промежуточный сосуд подается аммиака меньше, чем отсасывается пара в данный момент, то уровень жидкости в них понизится, что приведет к ухудшению процесса теплообмена и снижению холодопроизводительности установки.

При установившемся режиме параметры работы в аммиачной двухступенчатой холодильной установке должны быть следующие:

  • температура кипения аммиака на 4...6° С ниже температуры рассола, выходящего из испарителя;
  • разница между температурой испарения и температурой всасывания (на стороне низкого давления) не более 5...10° С;
  • температура воздуха в грузовом помещении вагона на 8... 10° С выше температуры рассола, выходящего из испарителя;
  • температура конденсации паров аммиака не более чем на 6...8° С выше температуры воздуха, выходящего из конденсатора;
  • разность температур входящего в испаритель и выходящего из него рассола 1,5...3° С;
  • температура выходящего из конденсатора воздуха на 8...10° выше температуры поступающего воздуха;
  • температура перегрева сжатых паров аммиака для КНД 60...110° С, для КВД 60...90°С;
  • нагрев трущихся частей компрессоров и подшипников не свыше 40...50° С.

Кроме того, установка работает нормально, если:

  • давление рассола по манометру находится в пределах 3,93·105…4,4·105 Па при условии, что все вагоны охлаждаются;
  • давление в системе смазки компрессора на 0,65·105…0,98·105 Па выше давления паров аммиака в картере;
  • мерная трубка на испарителе покрыта сухим инеем на 1/2 своей высоты плюс 100...150 мм;
  • промежуточный сосуд заполнен жидким аммиаком на 50...100 мм ниже верхнего уровня смотрового стекла;
  • уровень жидкого аммиака в ресивере от 1/2 до 2/3 высоты смотрового стекла;
  • всасывающий патрубок компрессора, корпус рассольного насоса и часть регулирующих вентилей покрыты сухим инеем;
  • уровень рассола в компенсационном баке примерно на середине смотрового стекла;
  • компрессоры, рассольные насосы и вентиляторы конденсаторов работают без шума и нет повышенного нагрева, сальников, подшипников и других деталей;
  • в рассольной, аммиачной и водяной системах нет утечек.

При работе аммиачной установки на неавтоматическом управлении ручные вентили регулирующей станции должны быть открыты – регулирующий вентиль для испарителя на 11/2 оборота, регулирующий вентиль для промежуточного сосуда на 1/4 оборота. Давление в промежуточном сосуде не регулируется, оно должно быть 5,9·105...8,8·105 Па.

Автоматизированные хладоновые холодильные установки не требуют постоянного наблюдения. Их периодически осматривают и выполняют профилактические операции по техническому обслуживанию. При проверке состояния хладоновых установок проверяют все оборудование, работу приборов автоматического регулирования, герметичность системы, при необходимости устраняют утечки хладона-12 и масла и пополняют ими систему, неисправные приборы заменяют.

В процессе обслуживания хладоновой холодильной установки в течение первого месяца после ввода ее в эксплуатацию один раз в неделю проверяют герметичность соединений. Кроме того, регулярно проводятся следующие работы:

  • еженедельно – проверка наличия масла в картере компрессора, его работы по шуму и стукам, температуры всех крышек цилиндров, состояния крепления трубопроводов и аппаратов;
  • через каждые 15 суток – проверка галоидной лампой всех соединений хладоновой системы (неплотности устраняются) и проверка наличия в системе воздуха;
  • через каждые 3 месяца – проверка погрешности размыкания контактов и дифференциала, сопротивления электрической изоляции между корпусом и токоведущими частями реле давления, контроля смазки и температуры, смазки и разработки шарниров жалюзи конденсатора;
  • через 400...500 ч работы после сдачи в эксплуатацию заменяют масло в компрессоре. Последующую замену масла производят при деповском ремонте.

vse-lekcii.ru

Схемы холодильных установок

Схемы холодильных установок должны обеспечивать: гибкость в процессе поддержания заданного режима, возможность быстрого переключения машин и аппаратов, простоту обслуживания и легкость монтажа, безопасность обслуживающего персонала и длительную безаварийную работу оборудования.

При графическом изображении схем холодильных установок различают принципиальные схемы, на которых оборудование и трубопроводы показаны без увязки с их пространственным положением, и монтажные схемы, на которых указано расположение оборудования в помещениях холодильных станций. Монтажные схемы должны быть полными, в принципиальных — часть линий и вспомогательного оборудования отсутствует, цель этого вида схем — уяснение принципа работы установки.

монтажная схема аммиачной холодильной установки непосредственного испаренияРис. 105. Монтажная схема аммиачной холодильной установки непосредственного испарения:

1 — маслосборник, 2 — кожухотрубный конденсатор, 3 — ресивер, 4 — коллектор аварийного выпуска аммиака, 5 — маслоотделитель, 6 — четырехцилиндровые компрессоры, 7 — манометры (на щите), 8 — воздухоотделитель, 9 — поплавковый регулирующий вентиль с аммиачным фильтром, 10 — промежуточный сосуд, 11 — трубопровод от отделителя жидкости, 12 — термометры, 13 — запорные вентили, 14 — двухцилиндровый компрессор, 15 — дренажный ресивер

На рис. 105 изображена монтажная схема аммиачной холодильной установки непосредственного испарения, на которой в аксонометрических проекциях изображены все ее трубопроводы (кроме водяных). Эта схема дает наглядное представление о взаимном расположении машин и аппаратов, пространственном положении связывающих их трубопроводов, местонахождении запорной арматуры, регулирующих станций и средств автоматизации.

схема фреоновой турбокомпрессорной холодильной машиныРис. 106. Схема фреоновой турбокомпрессорной холодильной машины:

1 — турбокомпрессор, 2 — конденсатор, 3 — поплавковый бак, 4 — испаритель

На рис. 106 представлена схема фреоновой турбокомпрессорной холодильной машины. Пары фреона-12 из испарителя 4 поступают в турбокомпрессор 1 и направляются в конденсатор 2 испарительно-конденсаторного агрегата. Из конденсатора жидкий фреон стекает в камеру высокого давления поплавкового бака 3. Поплавковый регулирующий вентиль ПРВ этой камеры дросселирует фреон до давления нагнетания первой ступени турбокомпрессора, перепуская фреон в камеру низкого давления. Образовавшиеся при дросселировании пары фреона отсасываются второй ступенью. В камере низкого давления жидкий фреон вторично дросселируется и направляется в испаритель. ПРВ поплавкового бака регулирует уровень жидкого фреона «до себя», поэтому из конденсатора полностью сливается жидкий фреон и исключается возможность прорыва паров фреона в испаритель.

Следующие две схемы — холодильные установки, работающие в производстве этилена, который выделяется из пиролизного газа. Сначала газ очищают от примесей, затем  сжимают  шестиступенчатым компрессором и направляют в систему газоразделения, в которой предусмотрена каскадная холодильная установка на пропилене и этилене со следующими температурами испарения: —37, —18, +6° С для пропилена (верхняя ветвь каскада) и —56, —70,—98°С для этилена (нижняя ветвь каскада).

В этой установке газы последовательно охлаждаются до температуры —90° С. Все компоненты пиролизного газа, кроме метана и водорода, сжижаются. Затем, используя разность температур кипения углеводородов, производят последовательную отпарку бутановой, пропан-пропиленовой и этанэтиленовой фракций, причем в некоторых аппаратах в качестве греющего агента используют пары пропилена и этилена, сжатые в турбокомпрессорах. Таким образом, каскадная холодильная машина цеха разделения газов пиролиза работает также и в качестве теплового насоса.

Рис. 107. Принципиальная схема трехступенчатой пропиленовой холодильной установки с t0 = — 37, —18 и +6° С:

1 — конденсатор, 2 — каплеотделители, 3 - турбокомпрессор, 4 — метановая колонна, 5 этиленовая колонна 6 — сепаратор 7, 10, 12 — потребители холода —37, —18 и +6°С; 8, 11, 11 — переохладители, 9, 13 — промсосуды, 15 — ресивер

Трехступенчатая пропиленовая холодильная установка (рис. 107) работает так: после III ступени турбокомпрессора 3 при температуре 65° С и давлении 15 ат пропилен конденсируется в водяном конденсаторе 1 (основная часть). Другая часть пропилена идет на конденсацию в кипятильник метановой колонны 4, откуда направляется в промежуточный сосуд 13 изотермы 6° С (т. е. по отношению к метановой колонне эта установка работает в режиме теплового насоса).

Пропилен из конденсатора 1 проходит ресивер 15, переохладитель 14 и поступает в промежуточный сосуд III ступени 13 и частично—потребителям холода 6° С 12. Пары пропилена от потребителей через промежуточный сосуд III ступени идут на всасывание III ступени компрессора. Жидкий пропилен из промежуточного сосуда 13 проходит переохладитель 11 и дросселируется потребителем холода —18° С (давление 3,3 ат) 10. Пары пропилена, образующиеся при дросселировании жидкости, поступающей в промежуточный сосуд 9, вместе с парами пропилена, идущими от потребителей холода, работающих на изотерме —18° С, поступают частично на всасывание II ступени турбокомпрессора и частично в кипятильник этиленовой колонны 5.

Жидкий пропилен из промежуточного сосуда 9 проходит переохладитель 8 и дросселируется потребителями холода — 37° С (давление 1,6 ат) 7. Испарившийся при этих условиях пропилен через сепаратор 6 идет на всасывание I ступени. На каждой ступени имеются каплеотделители 2, в которые предусмотрен впрыск жидкого пропилена при срабатывании системы антипомпажной защиты турбокомпрессора.

Инертные газы выводятся через воздухоотделитель, расположенный на ресивере.

Контрольные вопросы 1. Что такое монтажная и принципиальная схемы?

2. Перечислите  основные  требования  к  схемам  холодильных  установок.

3. Расскажите по схеме о работе холодильной установки.

4. Поясните работу каскадной холодильной установки.

5. Расскажите о схемах   подачи   хладагента   в испарительные   системы.

6. Каким требованиям должны отвечать такие схемы?

7. Что вы знаете о насосных и безнасосных схемах подачи  хладагента?

8. В чем различия между открытой и закрытой схемой подачи хладоносителя?

9. Расскажите о назначении расширительного бака.

10. Перечислите принципы компоновки оборудования холодильных станций.

www.stroitelstvo-new.ru

Эксплуатация холодильных установок

Машины и аппараты холодильных установок размещают так, чтобы обеспечивалось их нормальное обслуживание и ремонт.

Обслуживание холодильной установки заключается в подготовке ее к работе, пуске, регулировании подачи хладагента в испарительную систему, уходе за холодильной установкой во время работы, остановке и выключении машин и аппаратов, соблюдении правил техники безопасности, поддержании в чистоте и исправности машин и рабочих помещений, а также заполнении необходимой отчетной документации.

Вступление на дежурство сменного персонала начинается с проверки записей в журнале работы холодильной станции, а заканчивается контролем температур в основных точках холодильного цикла и проверкой работы оборудования холодильной станции.

Обе смены — сдающая и принимающая — расписываются о сдаче и приеме смены в журнале.

Дежурные периодически проверяют количество и плотность рассола, подачу воды на конденсаторы, исправность аварийной вентиляции, наличие необходимых запасных частей, материалов и инструмента, средств личной защиты. Особое внимание должно быть уделено проверке состояния трущихся частей компрессоров и насосов, работы масляной системы, клапанов и сальников.

Для удобства обслуживающего персонала на трубопроводах охлаждающей воды устанавливают смотровые фонари или другие приборы, позволяющие следить за протоком воды.

В различных местах холодильной установки устраивают также гнезда для приборов, требующихся как для постоянного контроля за работой установки, так и для периодических испытаний. Манометры, термометры, амперметры и другие измерительные приборы устанавливают так, чтобы при пуске установки они находились в поле зрения машиниста и его помощника.

Автоматическую регулирующую арматуру обычно дублируют ручной. Это позволяет продолжать выработку холода при выходе из строя части приборов автоматического регулирования.

Средние и крупные холодильные установки, в основном, работают с ручной системой пуска. Техническая эксплуатация их достаточно сложна и требует от обслуживающего персонала глубоких знаний физических основ получения холода, устройства машин, аппаратов, приборов, арматуры и правил обращения с ними.

Для облегчения работы персонала в машинных отделениях холодильных станций вывешивают схемы трубопроводов, планы расположения оборудования, сведения об основных параметрах холодильных установок, нормы расхода хладагента, масла, электроэнергии, плакаты по технике безопасности, графики профилактических осмотров и ремонтов.

С целью ориентации обслуживающего персонала в разветвленных схемах трубопроводов их окрашивают в условные цвета. Чаще всего применяют следующую окраску: для трубопроводов хладагента: нагнетательных — красный цвет, жидкостных — желтый, всасывающих — синий; для трубопроводов рассола: напорных — зеленый, обратных — коричневый; для трубопроводов воды: напорных — голубой, обратных — фиолетовый.

При наличии нескольких параметров холода на окрашенные трубопроводы наносят еще и условные кольца, показывающие, к какой машине относится данный трубопровод.

Эффективная и надежная работа любой холодильной установки зависит не только от хорошего технического состояния оборудования, но и от грамотной эксплуатации его. Непосредственное наблюдение за работой оборудования ведут машинисты, их помощники, аппаратчики, дежурные слесари и электрики, подчиненные начальнику смены холодильной станции.

Основная их задача — поддержание заданных параметров работы холодильных машин с наименьшими расходами энергии и эксплуатационных материалов и строгим выполнением правил техники безопасности.

Для успешного выполнения задач, стоящих перед эксплуатационным персоналом, необходимы: высокое качество и исправность оборудования; обеспеченность контрольно-измерительными приборами; наличие запасных частей, инструмента и ремонтных приспособлений; наличие хладагента, хладоносителя, воды, смазочных масел, воздуха КИП, эксплуатационных материалов и энергетических ресурсов; правильное заполнение систем хладагентом и хладоносителем; отсутствие загрязнений на поверхностях теплопередачи; своевременная профилактика и проведение ремонтов; ведение сменного журнала с выявлением нарушений режима работы; высокая квалификация обслуживающего персонала.

Эксплуатация холодильных установок регламентируется специальными инструкциями. Несоблюдение их может привести к нарушению технологического процесса у потребителей холода и повышению расхода энергии на получение холода.

Последовательность отдельных операций при пуске и остановке и порядок обслуживания зависят от конструктивных и эксплуатационных особенностей холодильной установки, которые обязательно должны быть отражены в инструкции по обслуживанию.

В настоящей главе рассмотрены основные правила и приемы эксплуатации наиболее распространенных типов крупных холодильных установок, которые в каждом отдельном случае должны уточняться в соответствии с пусковыми инструкциями заводов-изготовителей оборудования. Изучив эти приемы, будущий машинист или аппаратчик сможет освоить порядок пуска, регулирования и остановки холодильных установок любых систем.

К эксплуатации промышленных холодильных установок допускаются лица, достигшие восемнадцатилетнего возраста, прошедшие медицинское освидетельствование и имеющие удостоверение об окончании обучения избранной специальности.

Обслуживающий персонал должен хорошо знать и строго соблюдать правила и инструкции по эксплуатации и ремонту оборудования и приборов холодильных станций. Машинные отделения холодильных станций являются рабочим местом машиниста и его помощника. Насосные и аппаратные отделения обслуживают аппаратчики, подчиненные машинисту и согласующие с ним все свои действия.

Персонал холодильных станций ежегодно сдает экзамены квалификационной комиссии. Результаты экзаменов оформляют протоколом. Лицам, сдавшим эти экзамены, выдают специальные удостоверения.

Контрольные вопросы 1. Какие задачи ставятся перед эксплуатационным персоналом холодильных установок?

2. Перечислите условия, необходимые для успешной работы холодильной установки.

3. Расскажите, как заполняют систему аммиаком и фреоном?

4. Как приготовляют рассол?

5. Расскажите о подготовке к пуску холодильной установки.

6. Как производят пуск холодильной установки с поршневыми компрессорами и турбокомпрессорами?

7. Перечислите признаки нормальной работы поршневого компрессора.

8. Расскажите о смазке компрессора.

9. Как регулируют работу компрессионной холодильной установки?

10. Какие температурные перепады должны сопровождать нормальную работу аммиачной холодильной установки?

11. Расскажите о порядке остановки компрессионной холодильной установки.

12. Что вам известно о порядке обслуживания испарителей и конденсаторов?

13. Чем вызывается ухудшение теплопередачи в испарителе и конденсаторах?

14. Расскажите о подготовке к пуску фреоновых турбоагрегатов.

15. Какими признаками характеризуется нормальная работа турбохолодильной фреоновой установки?

16. Расскажите об особенностях эксплуатации пропиленовых турбоагрегатов.

17. Как заправляют абсорбционные холодильные машины водоаммиачный раствором?

18. Расскажите о пуске и остановке абсорбционной холодильной машины.

19. Расскажите об эксплуатации центробежных насосов.

20. Что является причиной коррозии холодильной аппаратуры? 21. Как работает протекторная защита?

www.stroitelstvo-new.ru

устройство холодильной установки

Устройство наибольшего количества холодильных машин базируется на компрессионном цикле охлаждения, основными конструктивными элементами которого являются - компрессор, испаритель, конденсатор и регулятор потока (терморегулирующий вентиль или капиллярная трубка), соединенные трубопроводами и представляющие собой замкнутую систему, в которой циркуляцию хладагента (фреона) осуществляет компрессор. Кроме обеспечения циркуляции, компрессор поддерживает в конденсаторе (на линии нагнетания) и высокое давление, порядка 20-23 атм.

Охлаждение в холодильной машине обеспечивается непрерывной циркуляцией, кипением и конденсацией хладагента в замкнутой системе. Кипение хладагента происходит при низком давлении и низкой температуре. Парообразный хладагент всасывается компрессором, и подаётся в конденсатор, давление хладагента повышается до 15-20 атм., а его температура повышается до 70-90˚С.

Проходя через конденсатор, горячий парообразный хладагент охлаждается и конденсируется, т.е. переходит в жидкую фазу. Конденсатор может быть либо воздушным, либо с водяным охлаждением - в зависимости от типа холодильной системы.

На выходе из конденсатора хладагент находится в жидком состоянии при высоком давлении. Размеры конденсатора выбираются таким образом, чтобы газ полностью сконденсировался внутри конденсатора. Поэтому температура жидкости на выходе из конденсатора оказывается несколько ниже температуры конденсации. Переохлаждение в конденсаторах с воздушным охлаждением обычно составляет примерно 4-7˚С. При этом температура конденсации примерно на 10-20˚С выше температуры атмосферного воздуха.

Затем хладагент в жидкой фазе при высокой температуре и давлении поступает в регулятор потока, где давление смеси резко уменьшается - часть жидкости при этом может испариться, переходя в парообразную фазу. Таким образом, в испаритель попадает смесь пара и жидкости. Жидкость кипит в испарителе, забирая тепло у окружающего воздуха, и вновь переходит в парообразное состояние.

Размеры испарителя выбираются таким образом, чтобы жидкость в нем полностью улетучилась. Поэтому температура пара на выходе из испарителя оказывается выше температуры кипения - происходит так называемый перегрев хладагента в испарителе. В этом случае даже самые маленькие капельки хладагента, и в компрессор не попадает жидкость.

Следует отметить, что в случае попадания жидкого хладагента в компрессор - так называемого гидравлического удара - возможны повреждения и поломки клапанов и других деталей компрессора. Для конденсаторов с воздушным охлаждением величина перегрева составляет 5-8˚С. Перегретый пар выходит из испарителя, и цикл возобновляется.

Таким образом, хладагент постоянно циркулирует по замкнутому контуру, меняя свое агрегатное состояние с жидкого на парообразное и наоборот. Несмотря на то, что существует много типов компрессионных холодильных машин, принципиальная схема цикла в них практически одинакова.

Опишем устройство отдельных агрегатов, узлов и деталей холодильного оборудования:

АГРЕГАТ

Холодильный агрегат состоит из следующих основных деталей и узлов: компрессора, ресивера, конденсатора, испарителя, терморегулирующего вентиля (ТРВ), осушительного патрона.

Компрессор

Холодильные агрегаты выпускаются на базе герметичных, экранированных, полугерметичных и сальниковых компрессоров. По своему конструктивному исполнению компрессоры, используемые в холодильных агрегатах, делятся на две основные категории: поршневые и ротационные, спиральные, винтовые.

Принципиальное отличие ротационных, спиральных и винтовых компрессоров от поршневых заключается в том, что всасывание и сжатие хладагента осуществляется не за счет возвратно-поступательного движения поршней в цилиндрах, а за счет вращательного движения пластин, спиралей и винтов.

В герметичных компрессорах электродвигатель и компрессор расположены в едином герметичном корпусе. Такие компрессоры широко используются в холодильных машинах малой и средней мощностей и в бытовых кондиционерах. Преимуществом герметичных агрегатов является их относительно невысокая стоимость и меньший уровень шума. Недостатком является невозможность ремонта компрессора даже при незначительных повреждениях, например, при выходе из строя клапана.

В экранированных компрессорах статор электродвигателя вынесен из фреономасляной среды. Агрегаты данного типа менее чувствительны к наличию влаги в холодильном контуре и, что немаловажно, позволяют все работы по монтажу и замене статора электродвигателя компрессора при его сгорании производить на месте эксплуатации, не нарушая герметичности всей системы.

В полугерметичных компрессорах электродвигатель и компрессор расположены в едином разборном корпусе. Эти компрессоры производятся различной мощности, что позволяет использовать их в агрегатах средней и большой мощности. Преимуществом является возможность ремонта и надежность в работе, недостатком - высокая по сравнению с герметичными компрессорами цена, повышенная шумность и необходимость технического обслуживания.

В сальниковых компрессорах электродвигатель расположен снаружи. Вал компрессора через сальники выведен за пределы корпуса и приводятся в движение электродвигателем с помощью ременной передачи. Такая конструкция способствует повышенной утечке хладагента через сальниковые уплотнения и требует регулярного технического обслуживания.

В настоящее время агрегаты на базе сальниковых компрессоров для торгового оборудования практически не выпускаются. Преимуществ в конструкциях с сальниковыми компрессорами на данный момент нет, ремонт подобных холодильных машин отличается невысокой надёжностью.

Конденсатор

Конденсатор представляет собой теплообменный аппарат, который передает тепловую энергию хладагента окружающей среде. В холодильных агрегатах для торгового оборудования чаще всего применяют конденсаторы воздушного охлаждения. По сравнению с конденсаторами водяного охлаждения, они экономичнее в работе и проще в эксплуатации.

Конденсатор может быть смонтирован на раме агрегата или быть установленным отдельно от него. Преимущество выносного конденсатора заключается в том, что он менее требователен к температуре воздуха в машинном отделении и практически не требует дополнительной вентиляции в машинном отделении.

Как правило, воздушный конденсатор для холодильных или морозильных камер устанавливается на открытом воздухе. Но, несмотря на преимущество выносного конденсатора, при работе холодильной установки в зимний период есть определенные проблемы:

возможность повреждения компрессора при пуске;

опасность попадания жидкого хладагента в компрессор;

обмерзание теплообменника при длительной работе;

уменьшение холодопроизводительности.

Для устранения этих причин используется дополнительный комплект автоматики: реле давления или регулятор скорости вращения электродвигателя, дифференциальный клапан, обратный клапан и регулятор давления конденсации.

Ресивер

Ресивер — резервуар, служащий для сбора жидкого хладагента с целью обеспечения его равномерного поступления к терморегулирующему вентилю и в испаритель. В малых хладоновых машинах ресивер предназначен для сбора хладагента во время ремонта машины, а также для охлаждения газа и отделения капель масла и влаги.

Испаритель

Испаритель — это аппарат, в котором жидкий хладагент кипит при низком давлении, отводя тепло от охлаждаемых объектов (продуктов). Чем ниже давление, поддерживаемое в испарителе, тем ниже температура кипящего хладагента. Температуру кипения, как правило, поддерживают на 10—15°С ниже температуры воздуха в камере. Температура воздуха в камере зависит от вида охлаждаемого продукта. Испаритель может быть расположен непосредственно в охлаждаемом объеме (камере, шкафе) или находиться за его пределами.

В соответствии с этим по назначению различают испарители для непосредственного охлаждения среды и испарители для охлаждения промежуточного хладоносителя (вода, рассол, воздух, и др.). Конструкция испарителя зависит от вида охлаждающей среды, необходимой холодопроизводительности, свойств самого хладагента. Как правило, это пластинчатые теплообменники с медными или алюминиевыми трубками и ребрами из алюминия, меди или оцинкованной стали.

Терморегулирующий вентиль

Терморегулирующий вентиль (ТРВ) устанавливается в магистраль нагнетания перед испарителем и обеспечивает заполнение испарителя жидким хладагентом в оптимальных пределах. Избыток хладагента в испарителе может привести попаданию в компрессор жидкой фазы хладагента, что приведёт к поломке компрессора. Недостаток хладагента в испарителе резко снижает эффективность работы испарителя.

Осушительный патрон

Осушительные патроны предназначены для очистки циркулирующего по системе холодильного агрегата хладагента от механических частиц и влаги. Часто осушительные патроны используют для понижения кислотности среды внутри системы холодильного агрегата. Осушительные патроны могут устанавливаться как на магистрали нагнетания, так и на стороне всасывания.

ВОЗДУХООХЛАДИТЕЛЬ

Воздухоохладитель - аппарат для охлаждения воздуха внутри охлаждаемого объёма. Состоит из испарителя и вентилятора (вентиляторов). Вентилятор прогоняет охлаждаемый воздух через испаритель и направляет на охлаждаемые продукты.

МОНОБЛОК

Машина холодильная моноблочная (моноблок) предназначена для создания искусственного холода в торговом холодильном оборудовании. Особенностью моноблока является то, что он не требует монтажа отдельных узлов на месте эксплуатации, а просто монтируется на холодильной камере. В отличие от сплит-систем, моноблок обладает меньшей стоимостью при одинаковых параметрах.

ТЕРМОСТАТ

Это устройство для отключения и включения компрессора, с целью поддержания определённой температуры в охлаждаемом объёме. Электронные термостаты основаны на принципе термопары, где электронное устройство - в зависимости от сопротивления температурного датчика - управляет временем работы компрессора.

Электромеханические термостаты работают на принципе расширения сильфонной гармошки, заполненной хладагентом. При охлаждении давление внутри сильфона понижается, сильфонная гармошка сжимается и контакты, через которые питается компрессор, размыкаются. При нагревании всё происходит в обратной последовательности.

Принципиальная схема работы термостата

ХЛАДАГЕНТЫ

Хладагенты — это рабочие вещества паровых холодильных машин, с помощью которых обеспечивается получение низких температур.

Хладон-12 (R-12) имеет химическую формулу CHF2C12 (дифтордихлорметан). Он представляет собой газообразное бесцветное вещество со слабым специфическим запахом, который начинает ощущаться при объемном содержании его паров в воздухе свыше 20%. Хладон-12 обладает хорошими термодинамическими свойствами

Хладон-22 (R-22), или дифтормонохлорметан (CHF2C1), так же как и хладон-12, обладает хорошими термодинамическими и эксплуатационными свойствами. Отличается он более низкой температурой кипения и более высокой теплотой парообразования. Объемная холодопроизводительность Хладона-22 примерно в 1,6 раза больше, чем Хладона-12.

studfiles.net

Регулирование работы холодильных установок и оптимальный режим

Навигация:Главная → Все категории → Монтаж холодильных установок

Регулирование работы холодильных установок и оптимальный режим Регулирование работы холодильных установок и оптимальный режим Регулирование работы холодильных установок. После пуска и включения в работу всех машин и аппаратов приступают к регулированию работы холодильной установки в целом. В процессе регулирования добиваются максимального вовлечения теплопередающей поверхности испарительной системы в активный процесс теплообмена с кипящим хладагентом, не допуская влажного хода компрессора. Регулирование является ответственным этапом пуска, так как от температурного режима аппаратов зависят все основные показатели работы холодильной установки: холодопроизводительность, расходы электроэнергии и воды, т.е. в конечном итоге экономичность установки. Об окончании пуска и отладки режима свидетельствует достижение номинальных показателей в соответствии с регламентом и оптимальных параметров работы установки для заданного в текущий момент режима охлаждения. При достижении установившегося режима массовый расход хладагента, проходящего через компрессор и испаритель, должен быть равен массовому расходу хладагента, проходящего через регулирующий вентиль. Таким образом, окончание регулирования — это достижение установившегося режима при оптимальных параметрах, т.е. достижение оптимального режима.

Оптимальный режим. Технологический режим холодильной установки, при котором достигается максимальная выработка холода при заданном уровне при минимальных затратах электроэнергии и воды, называют оптимальным. При правильном регулировании режима исправной холодильной установки ее основные параметры: температура кипения to, конденсации tK, переохлаждения перед регулирующим вентилем t", всасывания и нагнетания tK — являются функциями независимой переменной (температуры охлаждающей среды конденсатора) и изменяются вместе с ней.

При регулировании режима холодильных установок с испарителями затопленного типа регламентный режим достигается установлением определенного заполнения объема или статического уровня жидкого хладагента; в установках с незатопленными испарительными системами — путем налаживания циркуляции жидкого хладагента или подачи его терморегули-рующим вентилем, задействованным от изменения температуры перегрева отходящего пара.

При ручном регулировании следует иметь в виду, что после изменения степени открытия регулирующего вентиля проходит определенное время до изменения показаний приборов. Кроме того, имеются особенности регулирования насосных и безнасосных систем, а при подаче хладагента в ряд параллельных систем процесс регулирования проходит гораздо сложнее.

В насосных холодильных установках перегрев пара на всасывании не зависит от подачи хладагента в циркуляционный ресивер, а зависит от протяженности всасывающего трубопровода, качества изоляции и нагрузки на испарительную систему. При подаче хладагента в испарительные системы в насосных холодильных установках следят за стабильностью уровня в циркуляционном ресивере. Недостаточная подача хладагента приводит к снижению уровня в циркуляционном ресивере и срыву работы циркуляционного насоса. Значительное увеличение подачи хладагента может привести к переполнению циркуляционного ресивера и влажному ходу компрессора. Поддержание требуемого уровня жидкости в циркуляционном ресивере свидетельствует в установках с насосными системами о правильном открытии регулирующего вентиля.

При ручном регулировании подачу хладагента в испарительные системы в безнасосных холодильных установках ведут при постоянном контроле за перегревом пара по показаниям приборов контроля на каждом из параллельно работающих испарителей. В случае отсутствия приборов контроля температуры нагрева пара регулирование вручную требует большого мастерства от обслуживающего персонала при подаче хладагента в параллельные испарительные системы. При заполнении ниже нормы части испарителей возможно переполнение других, что приводит к влажному ходу компрессора.

Температура кипения в значительной степени влияет на экономичность холодильной установки. Измеряют температуру кипения по шкале мановакуумметра в испарителе.

Для испарителей, в которых охлаждается хладоноситель, оптимальными значениями разности между средней температурой хладоносителя и температурой кипения являются для аммиака 3-4 °С, а для хладона 4-5 °С.

От поддержания температуры кипения на заданном уровне зависят холодопроизводи-тельность установки, потребляемая мощность и соответственно удельный расход электроэнергии. При понижении температуры кипения холодо-производительность снижается, при повышении — повышается. Потребляемая мощность может и снижаться и повышаться (рис. 48). Изменение температуры кипения на 1 °С в среднем приводит к изменению холодопроизводительности компрессора на 4-5%, потребляемой мощности — на 2% и удельного расхода электроэнергии — на 2-3%. Температура кипения является самоустанавливающимся параметром, и ее значение зависит от ряда факторов: теплового потока от охлаждаемого объекта, состояния теплопередающей поверхности, соответствия между производительностью компрессоров и испарителей. По мере понижения t0 увеличивается удельный объем пара, что приводит к снижению производительности компрессора. С понижением t0 увеличивается разность между температурами перед РВ и t0, что приводит к увеличению потерь в РВ, так как при дросселировании увеличивается парообразование. С понижением to для всех промышленных установок общеотраслевого применения (to ^ -10 °С, tK > 25 °С) возрастает удельный расход мощности из-за увеличения работы сжатия (роста степени сжатия), повышения объемных потерь и потерь на трение в компрессоре. Особенно важное значение приобретает поддержание оптимальной температуры кипения в холодильниках. При понижении температуры кипения увеличиваются скорость охлаждения продуктов и холодопроизводительность охлаждающих приборов. Но при этом температура в охлаждаемых камерах становится ниже рекомендуемых значений, увеличивается интенсивность образования инея, снижается относительная влажность воздуха и, как следствие, возрастают потери от усушки продуктов, а в итоге возможно уменьшение всех технико-экономических показателей.

Температура и давление конденсации также являются важными параметрами для регулирования работы холодильной установки и зависят от состояния теплопередающей поверхности, производительности компрессоров и главным образом от температуры и количества охлаждающей среды: воды или воздуха.

Рис. 48. Изменение мощности, потребляемой одноступенчатыми и двуступенчатыми компрессорами, в зависимости от температуры кипения

Температуру конденсации замеряют по шкале манометра на конденсаторе. Нагрев воды в конденсаторах составляет 4-8 °С (для оросительных 2-3 °С, испарительных 0 °С) при температурном перепаде (разности между температурой конденсации и водой на выходе) — 2-4 °С. Для конденсаторов воздушного охлаждения эти показатели составляют соответственно 5-6 °С и 6-9 °С. Увеличение температуры конденсации на 1 °С приводит к снижению холодопроизводительности на 1-2%, увеличению потребляемой мощности на 1 — 1,5% и возрастанию удельного расхода электроэнергии на 2-2,5%. При повышении температуры конденсации увеличивают расход циркулирующей воды для охлаждения конденсаторов, проверяют работу воздушных вентиляторов при воздушном охлаждении, работу вентиляторов градирни и равномерность распределения воды по полкам в градирнях полочного типа; при регулировании притока воздуха в конденсаторах воздушного охлаждения увеличивают его расход. Увеличение расхода электроэнергии на вспомогательном оборудовании перекрывается экономией ее на привод компрессоров. Повышение давления конденсации возможно также из-за переполнения его жидким хладагентом (ухудшение теплообмена), скопления в верхней его части неконденсирующих примесей, загрязнения поверхности труб, загрязнения и засорения распределителей и форсунок в вертикальных, оросительных и испарительных конденсаторах. Дефекты в работе водорегуляторов также могут привести к повышению давления конденсации в автоматизированных холодильных установках.

Температура переохлаждения жидкого хладагента определяется Аепер, которая представляет собой разность между температурой конденсации и температурой хладагента перед регулирующим вентилем. Охлаждение жидкого хладагента ниже температуры конденсации в холодильных установках различного типа происходит в конденсаторах, переохладителях, регенеративных теплообменниках и промежуточных сосудах (в двуступенчатых и каскадных холодильных установках). Переохлаждение жидкого хладагента приводит к увеличению холодильного коэффициента вследствие уменьшения потерь при дросселировании. Каждый градус переохлаждения жидкого аммиака перед регулирующим вентилем увеличивает холодильный коэффициент на 0,4%. Увеличение холодопроизводительности установки из-за переохлаждения происходит без затрат электроэнергии на привод компрессоров. В конечном итоге переохлаждение осуществляется путем отвода теплоты охлаждающей водой в конденсаторе или переохладителе.

Температуры всасывания и нагнетания также являются важными параметрами для регулирования работ холодильной установки. Оптимальное значение перегрева всасываемого пара (разности температур всасывания и кипения) в аммиачных машинах одноступенчатых и высокой ступени компрессоров составляет 5- 10 °С, для низкой ступени — 10-20 °С, а в хладоновых не менее 10 °С.

В многоступенчатых и низкотемпературных холодильных установках с теплообменниками перегрев достигает больших значений. В малых холодильных машинах с терморегулирующим вентилем (ТРВ) допускается минимальный перегрев пара, необходимый для работы ТРВ непосредственно в испарителе — до 3-4°с. Увеличение перегрева сверх номинального значения свидетельствует о недостаточной подаче жидкого хладагента в испарительную систему. При этом ухудшается экономичность установки из-за неполного омывания хладагентом охладителей. Уменьшение перегрева свидетельствует об увеличении подачи хладагента в испарительную систему на величину, превышающую количество испаряющегося хладагента. Это может привести к влажному ходу компрессора.

Температура нагнетания зависит от температур конденсации, кипения и перегрева на всасывании, а также от технического состояния компрессора. Температура нагнетания не должна превышать требований завода-изготовителя в общем случае: для поршневых аммиачных 130 °С, поршневых хладоновых (R12) 100 °С, ротационных 110 °С, винтовых аммиачных 105 °С, винтовых хладоновых 90 °С.

Похожие статьи:Технология ремонта герметичных холодильных агрегатов

Навигация:Главная → Все категории → Монтаж холодильных установок

Статьи по теме:

Главная → Справочник → Статьи → Блог → Форум

stroy-spravka.ru


Смотрите также